Deriving Digital Twin Models of Existing Bridges from Point Cloud Data Using Parametric Models and Metaheuristic Algorithms

M. Saeed Mafipour, Simon Vilgertshofer, André Borrmann

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

6 Zitate (Scopus)

Abstract

In building information modeling (BIM), a digital twin (DT) is a model that represents the current status of an existing structure; thus, facilitating the operation and management process. Due to higher measurement speed and accuracy, laser scanning and photogrammetry are generally employed, resulting in point cloud data (PCD). Today, the required volumetric models are created in a laborious and costly manual process from PCD. This paper aims to automate this process by applying metaheuristic optimization algorithms to fit highly parametric BIM models of bridges into given point clouds. For this purpose, parametric base models of elements are created and instantiated by adjusting their parameters' value using metaheuristic algorithms. This optimization process leads to extracting the parameters for a model from PCD and creating 3-D volumetric shapes. The paper's results show that metaheuristic algorithms can be successfully used for parametric modeling even in point clouds with occlusion and clutter.

OriginalspracheEnglisch
TitelEG-ICE 2021 Workshop on Intelligent Computing in Engineering, Proceedings
Redakteure/-innenJimmy Abualdenien, Andre Borrmann, Lucian-Constantin Ungureanu, Timo Hartmann
Herausgeber (Verlag)Technische Universitat Berlin
Seiten464-474
Seitenumfang11
ISBN (elektronisch)9783798332126
PublikationsstatusVeröffentlicht - 2021
Veranstaltung28th International Workshop on Intelligent Computing in Engineering of the European Group for Intelligent Computing in Engineering, EG-ICE 2021 - Virtual, Online
Dauer: 30 Juni 20212 Juli 2021

Publikationsreihe

NameEG-ICE 2021 Workshop on Intelligent Computing in Engineering, Proceedings

Konferenz

Konferenz28th International Workshop on Intelligent Computing in Engineering of the European Group for Intelligent Computing in Engineering, EG-ICE 2021
OrtVirtual, Online
Zeitraum30/06/212/07/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Deriving Digital Twin Models of Existing Bridges from Point Cloud Data Using Parametric Models and Metaheuristic Algorithms“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren