Derivation of a real-life driving cycle from fleet testing data with the Markov-Chain-Monte-Carlo Method

Michael Fries, Alexandre Baum, Michael Wittmann, Markus Lienkamp

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

10 Zitate (Scopus)

Abstract

Future driving cycles are subject to a number of regulations and requirements. A vehicles ability to meet the emission regulations under real-life conditions is based on a precise testing procedure. Additionally, intelligent vehicle design needs to be customer oriented. The requirements for an optimum drivetrain design have to be deviated from the customers driving behavior. Especially in the price sensitive long-haul business. In a new approach the Markov-Chain Method (MC) is applied to fleet testing data from the research project Truck2030. Two different transportation companies collected 95,279 km in long-haul traffic. The objective is to find a shortened driving cycle with the quality to represent the original fleet testing data. The designed MC is focused on topographic and dynamic information of the dataset. The results show a discrepancy below 1 % in fuel consumption error between the original fleet testing data and the representative driving cycle.

OriginalspracheEnglisch
Titel2018 IEEE Intelligent Transportation Systems Conference, ITSC 2018
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten2550-2555
Seitenumfang6
ISBN (elektronisch)9781728103235
DOIs
PublikationsstatusVeröffentlicht - 7 Dez. 2018
Veranstaltung21st IEEE International Conference on Intelligent Transportation Systems, ITSC 2018 - Maui, USA/Vereinigte Staaten
Dauer: 4 Nov. 20187 Nov. 2018

Publikationsreihe

NameIEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC
Band2018-November

Konferenz

Konferenz21st IEEE International Conference on Intelligent Transportation Systems, ITSC 2018
Land/GebietUSA/Vereinigte Staaten
OrtMaui
Zeitraum4/11/187/11/18

Fingerprint

Untersuchen Sie die Forschungsthemen von „Derivation of a real-life driving cycle from fleet testing data with the Markov-Chain-Monte-Carlo Method“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren