Deformed octagon-hexagon-square structure of group-IV and group-V elements and III-V compounds

T. Gorkan, E. Aktürk, S. Ciraci

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

8 Zitate (Scopus)


We report the prediction of a two-dimensional (2D) allotrope common to group-IV and group-V elements and III-V compounds, which consist of two nonplanar atomic layers connected by vertical bonds and form deformed octagon, hexagon, and squares (dohs) with threefold and fourfold coordinated atoms. Specifically for silicon, it is a semiconductor with cohesion stronger than silicene and can be chemically doped to have localized donor and acceptor states in the band gap. This allotrope can be functionalized to construct quasi-2D clathrates with transition metal atoms and attain spin polarized metallic, half-metallic, or semiconducting states. It is demonstrated that these properties can be maintained, when it is grown on a specific substrate. Stringent tests show that the atomic structure is dynamically stable and can sustain thermal excitation at high temperatures. Additionally, stable bilayer, as well as 3D layeredlike structures, can be constructed by the vertical stacking of single-layer dohs. Surprisingly, C, Ge, AlP, and GaAs can form also similar 2D semiconducting structures. In contrast to semiconducting black and blue phosphorene, P-dohs is a semimetal with band inversion. While the premise of using well-developed silicon technology in 2D electronics has been hampered by the semimetallic silicene, the realization of this 2D, semiconducting allotrope of silicon and compounds can constitute a productive direction in 2D nanoelectronics/spintronics.

FachzeitschriftPhysical Review B
PublikationsstatusVeröffentlicht - 19 Sept. 2019
Extern publiziertJa


Untersuchen Sie die Forschungsthemen von „Deformed octagon-hexagon-square structure of group-IV and group-V elements and III-V compounds“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren