DeepSPACE: Approximate geospatial query processing with deep learning

Dimitri Vorona, Andreas Kipf, Thomas Neumann, Alfons Kemper

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

12 Zitate (Scopus)

Abstract

The amount of available geospatial data grows at an ever faster pace. This leads to a constantly increasing demand for processing power and storage in order to provide data analysis in a timely manner. At the same time, a lot of geospatial processing is visual and exploratory in nature, thus having bounded precision requirements. We present DeepSPACE, a deep learning-based approximate geospatial query processing engine which combines modest hardware requirements with the ability to answer flexible aggregation queries while keeping the required state to a few hundred KiBs.

OriginalspracheEnglisch
Titel27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2019
Redakteure/-innenFarnoush Banaei-Kashani, Goce Trajcevski, Ralf Hartmut Guting, Lars Kulik, Shawn Newsam
Herausgeber (Verlag)Association for Computing Machinery
Seiten500-503
Seitenumfang4
ISBN (elektronisch)9781450369091
DOIs
PublikationsstatusVeröffentlicht - 5 Nov. 2019
Veranstaltung27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2019 - Chicago, USA/Vereinigte Staaten
Dauer: 5 Nov. 20198 Nov. 2019

Publikationsreihe

NameGIS: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems

Konferenz

Konferenz27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2019
Land/GebietUSA/Vereinigte Staaten
OrtChicago
Zeitraum5/11/198/11/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „DeepSPACE: Approximate geospatial query processing with deep learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren