TY - JOUR
T1 - Deep shells
T2 - 34th Conference on Neural Information Processing Systems, NeurIPS 2020
AU - Eisenberger, Marvin
AU - Toker, Aysim
AU - Leal-Taixé, Laura
AU - Cremers, Daniel
N1 - Publisher Copyright:
© 2020 Neural information processing systems foundation. All rights reserved.
PY - 2020
Y1 - 2020
N2 - We propose a novel unsupervised learning approach to 3D shape correspondence that builds a multiscale matching pipeline into a deep neural network. This approach is based on smooth shells, the current state-of-the-art axiomatic correspondence method, which requires an a priori stochastic search over the space of initial poses. Our goal is to replace this costly preprocessing step by directly learning good initializations from the input surfaces. To that end, we systematically derive a fully differentiable, hierarchical matching pipeline from entropy regularized optimal transport. This allows us to combine it with a local feature extractor based on smooth, truncated spectral convolution filters. Finally, we show that the proposed unsupervised method significantly improves over the state-of-the-art on multiple datasets, even in comparison to the most recent supervised methods. Moreover, we demonstrate compelling generalization results by applying our learned filters to examples that significantly deviate from the training set.
AB - We propose a novel unsupervised learning approach to 3D shape correspondence that builds a multiscale matching pipeline into a deep neural network. This approach is based on smooth shells, the current state-of-the-art axiomatic correspondence method, which requires an a priori stochastic search over the space of initial poses. Our goal is to replace this costly preprocessing step by directly learning good initializations from the input surfaces. To that end, we systematically derive a fully differentiable, hierarchical matching pipeline from entropy regularized optimal transport. This allows us to combine it with a local feature extractor based on smooth, truncated spectral convolution filters. Finally, we show that the proposed unsupervised method significantly improves over the state-of-the-art on multiple datasets, even in comparison to the most recent supervised methods. Moreover, we demonstrate compelling generalization results by applying our learned filters to examples that significantly deviate from the training set.
UR - http://www.scopus.com/inward/record.url?scp=85103010620&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85103010620
SN - 1049-5258
VL - 2020-December
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
Y2 - 6 December 2020 through 12 December 2020
ER -