Deep semantic segmentation of aerial imagery based on multi-modal data

Kaiqiang Chen, Kun Fu, Xian Sun, Michael Weinmann, Stefan Hinz, Boris Jutzi, Martin Weinmann

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

7 Zitate (Scopus)

Abstract

In this paper, we focus on the use of multi-modal data to achieve a semantic segmentation of aerial imagery. Thereby, the multi-modal data is composed of a true orthophoto, the Digital Surface Model (DSM) and further representations derived from these. Taking data of different modalities separately and in combination as input to a Residual Shuffling Convolutional Neural Network (RSCNN), we analyze their value for the classification task given with a benchmark dataset. The derived results reveal an improvement if different types of geometric features extracted from the DSM are used in addition to the true orthophoto.

OriginalspracheEnglisch
Titel2018 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten6219-6222
Seitenumfang4
ISBN (elektronisch)9781538671504
DOIs
PublikationsstatusVeröffentlicht - 31 Okt. 2018
Extern publiziertJa
Veranstaltung38th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018 - Valencia, Spanien
Dauer: 22 Juli 201827 Juli 2018

Publikationsreihe

NameInternational Geoscience and Remote Sensing Symposium (IGARSS)
Band2018-July

Konferenz

Konferenz38th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018
Land/GebietSpanien
OrtValencia
Zeitraum22/07/1827/07/18

Fingerprint

Untersuchen Sie die Forschungsthemen von „Deep semantic segmentation of aerial imagery based on multi-modal data“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren