Deep Reinforcement Learning Current Control of Permanent Magnet Synchronous Machines

Tobias Schindler, Lara Broghammer, Petros Karamanakos, Armin Dietz, Ralph Kennel

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

6 Zitate (Scopus)

Abstract

This paper presents a current control approach for permanent magnet synchronous machines (PMSMs) using the deep reinforcement learning algorithm deep deterministic policy gradient (DDPG). The proposed method is designed by examining different training setups regarding the reward function, the observation vector, and the actor neural network. In doing so, the impact of the different design factors on the steady-state and dynamic behavior of the system is assessed, thus facilitating the selection of the setup that results in the most favorable performance. Moreover, to provide the necessary insight into the controller design, the entire path from training the agent in simulation, through testing the control in a controller-in-the-loop (CIL) environment, to deployment on the test bench is described. Subsequently, experimental results are provided, which show the efficacy of the presented algorithm over a wide range of operating points. Finally, in an attempt to promote open science and expedite the use of deep reinforcement learning in power electronic systems, the trained agents, including the CIL model, are rendered openly available and accessible such that reproducibility of the presented approach is possible.

OriginalspracheEnglisch
Titel2023 IEEE International Electric Machines and Drives Conference, IEMDC 2023
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9798350398991
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung2023 IEEE International Electric Machines and Drives Conference, IEMDC 2023 - San Francisco, USA/Vereinigte Staaten
Dauer: 15 Mai 202318 Mai 2023

Publikationsreihe

Name2023 IEEE International Electric Machines and Drives Conference, IEMDC 2023

Konferenz

Konferenz2023 IEEE International Electric Machines and Drives Conference, IEMDC 2023
Land/GebietUSA/Vereinigte Staaten
OrtSan Francisco
Zeitraum15/05/2318/05/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Deep Reinforcement Learning Current Control of Permanent Magnet Synchronous Machines“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren