Deep Light Direction Reconstruction from single RGB images

Markus Miller, Alfred Nischwitz, Rüdiger Westermann

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

In augmented reality applications, consistent illumination between virtual and real objects is important for creating an immersive user experience. Consistent illumination can be achieved by appropriate parameterisation of the virtual illumination model, that is consistent with real-world lighting conditions. In this study, we developed a method to reconstruct the general light direction from red-green-blue (RGB) images of real-world scenes using a modified VGG-16 neural network. We reconstructed the general light direction as azimuth and elevation angles. To avoid inaccurate results caused by coordinate uncertainty occurring at steep elevation angles, we further introduced stereographically projected coordinates. Unlike recent deep-learning-based approaches for reconstructing the light source direction, our approach does not require depth information and thus does not rely on special red-green-blue-depth (RGB-D) images as input.

OriginalspracheEnglisch
Titel29th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, WSCG 2021 - Proceedings
Redakteure/-innenVaclav Skala
Herausgeber (Verlag)Vaclav Skala - Union Agency
Seiten31-40
Seitenumfang10
Band3101
ISBN (elektronisch)9788086943343
DOIs
PublikationsstatusVeröffentlicht - 2021
Veranstaltung29th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, WSCG 2021 - Plzen, Tschechische Republik
Dauer: 17 Mai 202120 Mai 2021

Konferenz

Konferenz29th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, WSCG 2021
Land/GebietTschechische Republik
OrtPlzen
Zeitraum17/05/2120/05/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Deep Light Direction Reconstruction from single RGB images“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren