Deep learning radar object detection and classification for urban automotive scenarios

Rodrigo Pérez, Falk Schubert, Ralph Rasshofer, Erwin Biebl

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

28 Zitate (Scopus)

Abstract

This paper presents a single shot detection and classification system in urban automotive scenarios with a 77 GHz frequency modulated continuous wave radar sensor. The detection and classification of road users is based on the real-time object detection system YOLO (You Only Look Once) applied to the pre-processed radar range-Doppler-angle power spectrum. To train and test the proposed system, data is gathered with a test vehicle parked on urban roads. A mean average precision of 70.64% is achieved on a separate test data set.

OriginalspracheEnglisch
Titel2019 Kleinheubach Conference, KHB 2019
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9783948571009
PublikationsstatusVeröffentlicht - Sept. 2019
Veranstaltung2019 Kleinheubach Conference, KHB 2019 - Miltenberg, Deutschland
Dauer: 23 Sept. 201925 Sept. 2019

Publikationsreihe

Name2019 Kleinheubach Conference, KHB 2019

Konferenz

Konferenz2019 Kleinheubach Conference, KHB 2019
Land/GebietDeutschland
OrtMiltenberg
Zeitraum23/09/1925/09/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „Deep learning radar object detection and classification for urban automotive scenarios“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren