TY - JOUR
T1 - Deep learning methods hold promise for light fluence compensation in three-dimensional optoacoustic imaging
AU - Madasamy, Arumugaraj
AU - Gujrati, Vipul
AU - Ntziachristos, Vasilis
AU - Prakash, Jaya
PY - 2022/10/1
Y1 - 2022/10/1
N2 - SIGNIFICANCE: Quantitative optoacoustic imaging (QOAI) continues to be a challenge due to the influence of nonlinear optical fluence distribution, which distorts the optoacoustic image representation. Nonlinear optical fluence correction in OA imaging is highly ill-posed, leading to the inaccurate recovery of optical absorption maps. This work aims to recover the optical absorption maps using deep learning (DL) approach by correcting for the fluence effect. AIM: Different DL models were compared and investigated to enable optical absorption coefficient recovery at a particular wavelength in a nonhomogeneous foreground and background medium. APPROACH: Data-driven models were trained with two-dimensional (2D) Blood vessel and three-dimensional (3D) numerical breast phantom with highly heterogeneous/realistic structures to correct for the nonlinear optical fluence distribution. The trained DL models such as U-Net, Fully Dense (FD) U-Net, Y-Net, FD Y-Net, Deep residual U-Net (Deep ResU-Net), and generative adversarial network (GAN) were tested to evaluate the performance of optical absorption coefficient recovery (or fluence compensation) with in-silico and in-vivo datasets. RESULTS: The results indicated that FD U-Net-based deconvolution improves by about 10% over reconstructed optoacoustic images in terms of peak-signal-to-noise ratio. Further, it was observed that DL models can indeed highlight deep-seated structures with higher contrast due to fluence compensation. Importantly, the DL models were found to be about 17 times faster than solving diffusion equation for fluence correction. CONCLUSIONS: The DL methods were able to compensate for nonlinear optical fluence distribution more effectively and improve the optoacoustic image quality.
AB - SIGNIFICANCE: Quantitative optoacoustic imaging (QOAI) continues to be a challenge due to the influence of nonlinear optical fluence distribution, which distorts the optoacoustic image representation. Nonlinear optical fluence correction in OA imaging is highly ill-posed, leading to the inaccurate recovery of optical absorption maps. This work aims to recover the optical absorption maps using deep learning (DL) approach by correcting for the fluence effect. AIM: Different DL models were compared and investigated to enable optical absorption coefficient recovery at a particular wavelength in a nonhomogeneous foreground and background medium. APPROACH: Data-driven models were trained with two-dimensional (2D) Blood vessel and three-dimensional (3D) numerical breast phantom with highly heterogeneous/realistic structures to correct for the nonlinear optical fluence distribution. The trained DL models such as U-Net, Fully Dense (FD) U-Net, Y-Net, FD Y-Net, Deep residual U-Net (Deep ResU-Net), and generative adversarial network (GAN) were tested to evaluate the performance of optical absorption coefficient recovery (or fluence compensation) with in-silico and in-vivo datasets. RESULTS: The results indicated that FD U-Net-based deconvolution improves by about 10% over reconstructed optoacoustic images in terms of peak-signal-to-noise ratio. Further, it was observed that DL models can indeed highlight deep-seated structures with higher contrast due to fluence compensation. Importantly, the DL models were found to be about 17 times faster than solving diffusion equation for fluence correction. CONCLUSIONS: The DL methods were able to compensate for nonlinear optical fluence distribution more effectively and improve the optoacoustic image quality.
KW - deep learning
KW - fluence correction
KW - image deconvolution
KW - image reconstruction
KW - optoacoustic imaging
UR - http://www.scopus.com/inward/record.url?scp=85139432317&partnerID=8YFLogxK
U2 - 10.1117/1.JBO.27.10.106004
DO - 10.1117/1.JBO.27.10.106004
M3 - Article
C2 - 36209354
AN - SCOPUS:85139432317
SN - 1083-3668
VL - 27
JO - Journal of Biomedical Optics
JF - Journal of Biomedical Optics
IS - 10
ER -