Deep Learning Meets SAR: Concepts, models, pitfalls, and perspectives

Xiao Xiang Zhu, Sina Montazeri, Mohsin Ali, Yuansheng Hua, Yuanyuan Wang, Lichao Mou, Yilei Shi, Feng Xu, Richard Bamler

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

208 Zitate (Scopus)

Abstract

Deep learning in remote sensing has received considerable international hype, but it is mostly limited to the evaluation of optical data. Although deep learning has been introduced in synthetic aperture radar (SAR) data processing, despite successful first attempts, its huge potential remains locked. In this article, we provide an introduction to the most relevant deep learning models and concepts, point out possible pitfalls by analyzing special characteristics of SAR data, review the state of the art of deep learning applied to SAR, summarize available benchmarks, and recommend some important future research directions. With this effort, we hope to stimulate more research in this interesting yet underexploited field and to pave the way for the use of deep learning in big SAR data processing workflows.

OriginalspracheEnglisch
Seiten (von - bis)143-172
Seitenumfang30
FachzeitschriftIEEE Geoscience and Remote Sensing Magazine
Jahrgang9
Ausgabenummer4
DOIs
PublikationsstatusVeröffentlicht - 1 Dez. 2021

Fingerprint

Untersuchen Sie die Forschungsthemen von „Deep Learning Meets SAR: Concepts, models, pitfalls, and perspectives“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren