Deep learning in attosecond metrology

Christian Brunner, Andreas Duensing, Christian Schröder, Michael Mittermair, Vladimir Golkov, Maximilian Pollanka, Daniel Cremers, Reinhard Kienberger

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

7 Zitate (Scopus)

Abstract

Time-resolved photoelectron spectroscopy provides a versatile tool for investigating electron dynamics in gaseous, liquid, and solid samples on sub-femtosecond time scales. The extraction of information from spectrograms recorded with the attosecond streak camera remains a difficult challenge. Common algorithms are highly specialized and typically computationally heavy. In this work, we apply deep neural networks to map from streaking traces to near-infrared pulses as well as electron wavepackets and extensively benchmark our results on simulated data. Additionally, we illustrate domain-shift to real-world data. We also attempt to quantify the model predictive uncertainty. Our deep neural networks display competitive retrieval quality and superior tolerance against noisy data conditions, while reducing the computational time by orders of magnitude.

OriginalspracheEnglisch
Seiten (von - bis)15669-15684
Seitenumfang16
FachzeitschriftOptics Express
Jahrgang30
Ausgabenummer9
DOIs
PublikationsstatusVeröffentlicht - 25 Apr. 2022

Fingerprint

Untersuchen Sie die Forschungsthemen von „Deep learning in attosecond metrology“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren