Deep Learning based Uncertainty Decomposition for Real-time Control

Neha Das, Jonas Umlauft, Armin Lederer, Alexandre Capone, Thomas Beckers, Sandra Hirche

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Data-driven control in unknown environments requires a clear understanding of the involved uncertainties for ensuring safety and efficient exploration. While aleatoric uncertainty that arises from measurement noise can often be explicitly modeled given a parametric description, it can be harder to model epistemic uncertainty, which describes the presence or absence of training data. The latter can be particularly useful for implementing exploratory control strategies when system dynamics are unknown. We propose a novel method for detecting the absence of training data using deep learning, which gives a continuous valued scalar output between 0 (indicating low uncertainty) and 1 (indicating high uncertainty). We utilize this detector as a proxy for epistemic uncertainty and show its advantages over existing approaches on synthetic and real-world datasets. Our approach can be directly combined with aleatoric uncertainty estimates and allows for uncertainty estimation in real-time as the inference is sample-free unlike existing approaches for uncertainty modeling. We further demonstrate the practicality of this uncertainty estimate in deploying online data-efficient control on a simulated quadcopter acted upon by an unknown disturbance model.

OriginalspracheEnglisch
TitelIFAC-PapersOnLine
Redakteure/-innenHideaki Ishii, Yoshio Ebihara, Jun-ichi Imura, Masaki Yamakita
Herausgeber (Verlag)Elsevier B.V.
Seiten847-853
Seitenumfang7
Auflage2
ISBN (elektronisch)9781713872344
DOIs
PublikationsstatusVeröffentlicht - 1 Juli 2023
Veranstaltung22nd IFAC World Congress - Yokohama, Japan
Dauer: 9 Juli 202314 Juli 2023

Publikationsreihe

NameIFAC-PapersOnLine
Nummer2
Band56
ISSN (elektronisch)2405-8963

Konferenz

Konferenz22nd IFAC World Congress
Land/GebietJapan
OrtYokohama
Zeitraum9/07/2314/07/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Deep Learning based Uncertainty Decomposition for Real-time Control“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren