Deep learning-based quantitative optoacoustic tomography of deep tissues in the absence of labeled experimental data

Jiao Li, Cong Wang, Tingting Chen, Tong Lu, Shuai Li, Biao Sun, Feng Gao, Vasilis Ntziachristos

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

26 Zitate (Scopus)

Abstract

Deep learning (DL) shows promise for quantitating anatomical features and functional parameters of tissues in quantitative optoacoustic tomography (QOAT), but its application to deep tissue is hindered by a lack of ground truth data. We propose DL-based "QOAT-Net,"which functions without labeled experimental data: A dual-path convolutional network estimates absorption coefficients after training with data-label pairs generated via unsupervised "simulation-to-experiment"data translation. In simulations, phantoms, and ex vivo and in vivo tissues, QOAT-Net affords quantitative absorption images with high spatial resolution. This approach makes DL-based QOAT and other imaging applications feasible in the absence of ground truth data.

OriginalspracheEnglisch
Seiten (von - bis)32-41
Seitenumfang10
FachzeitschriftOptica
Jahrgang9
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - 20 Jan. 2022

Fingerprint

Untersuchen Sie die Forschungsthemen von „Deep learning-based quantitative optoacoustic tomography of deep tissues in the absence of labeled experimental data“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren