@inproceedings{35b8b74244db4fe1b40276a0bb3bd62e,
title = "Deep Interactive Learning: An Efficient Labeling Approach for Deep Learning-Based Osteosarcoma Treatment Response Assessment",
abstract = "Osteosarcoma is the most common malignant primary bone tumor. Standard treatment includes pre-operative chemotherapy followed by surgical resection. The response to treatment as measured by ratio of necrotic tumor area to overall tumor area is a known prognostic factor for overall survival. This assessment is currently done manually by pathologists by looking at glass slides under the microscope which may not be reproducible due to its subjective nature. Convolutional neural networks (CNNs) can be used for automated segmentation of viable and necrotic tumor on osteosarcoma whole slide images. One bottleneck for supervised learning is that large amounts of accurate annotations are required for training which is a time-consuming and expensive process. In this paper, we describe Deep Interactive Learning (DIaL) as an efficient labeling approach for training CNNs. After an initial labeling step is done, annotators only need to correct mislabeled regions from previous segmentation predictions to improve the CNN model until the satisfactory predictions are achieved. Our experiments show that our CNN model trained by only 7 h of annotation using DIaL can successfully estimate ratios of necrosis within expected inter-observer variation rate for non-standardized manual surgical pathology task.",
keywords = "Computational pathology, Interactive learning, Osteosarcoma",
author = "Ho, {David Joon} and Agaram, {Narasimhan P.} and Sch{\"u}ffler, {Peter J.} and Vanderbilt, {Chad M.} and Jean, {Marc Henri} and Hameed, {Meera R.} and Fuchs, {Thomas J.}",
note = "Publisher Copyright: {\textcopyright} 2020, Springer Nature Switzerland AG.; 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020 ; Conference date: 04-10-2020 Through 08-10-2020",
year = "2020",
doi = "10.1007/978-3-030-59722-1_52",
language = "English",
isbn = "9783030597214",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Science and Business Media Deutschland GmbH",
pages = "540--549",
editor = "Martel, {Anne L.} and Purang Abolmaesumi and Danail Stoyanov and Diana Mateus and Zuluaga, {Maria A.} and Zhou, {S. Kevin} and Daniel Racoceanu and Leo Joskowicz",
booktitle = "Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 - 23rd International Conference, Proceedings",
}