Deep Combinatorial Aggregation

Yuesong Shen, Daniel Cremers

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

Neural networks are known to produce poor uncertainty estimations, and a variety of approaches have been proposed to remedy this issue. This includes deep ensemble, a simple and effective method that achieves state-of-the-art results for uncertainty-aware learning tasks. In this work, we explore a combinatorial generalization of deep ensemble called deep combinatorial aggregation (DCA). DCA creates multiple instances of network components and aggregates their combinations to produce diversified model proposals and predictions. DCA components can be defined at different levels of granularity. And we discovered that coarse-grain DCAs can outperform deep ensemble for uncertainty-aware learning both in terms of predictive performance and uncertainty estimation. For fine-grain DCAs, we discover that an average parameterization approach named deep combinatorial weight averaging (DCWA) can improve the baseline training. It is on par with stochastic weight averaging (SWA) but does not require any custom training schedule or adaptation of BatchNorm layers. Furthermore, we propose a consistency enforcing loss that helps the training of DCWA and modelwise DCA. We experiment on in-domain, distributional shift, and out-of-distribution image classification tasks, and empirically confirm the effectiveness of DCWA and DCA approaches.

OriginalspracheEnglisch
TitelAdvances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
Redakteure/-innenS. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh
Herausgeber (Verlag)Neural information processing systems foundation
ISBN (elektronisch)9781713871088
PublikationsstatusVeröffentlicht - 2022
Veranstaltung36th Conference on Neural Information Processing Systems, NeurIPS 2022 - New Orleans, USA/Vereinigte Staaten
Dauer: 28 Nov. 20229 Dez. 2022

Publikationsreihe

NameAdvances in Neural Information Processing Systems
Band35
ISSN (Print)1049-5258

Konferenz

Konferenz36th Conference on Neural Information Processing Systems, NeurIPS 2022
Land/GebietUSA/Vereinigte Staaten
OrtNew Orleans
Zeitraum28/11/229/12/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Deep Combinatorial Aggregation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren