Deep Clustering of Mobile Network Data with Sparse Autoencoders

Marton Kajo, Benedek Schultz, Georg Carle

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Unsupervised machine learning methods, such as clustering algorithms could be powerful tools for automation. By simplifying data through structuring, these algorithms can help network management use-cases where autonomous agency or elevated levels of cognition is required. Recent developments in deep learning allow clustering algorithms to gain unprecedented insight into the data, creating meaningful clusters as a result. In this paper, we propose a Sparse Clustering Autoencoder, capable of autonomously encoding cell behavior into a graph-like representation we call Network State Transition Graphs. We compare our proposed algorithm against other deep learning-based clustering algorithms, and demonstrate its utility on data from a real, large-scale mobile network deployment.

OriginalspracheEnglisch
TitelProceedings of IEEE/IFIP Network Operations and Management Symposium 2020
UntertitelManagement in the Age of Softwarization and Artificial Intelligence, NOMS 2020
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9781728149738
DOIs
PublikationsstatusVeröffentlicht - Apr. 2020
Veranstaltung2020 IEEE/IFIP Network Operations and Management Symposium, NOMS 2020 - Budapest, Ungarn
Dauer: 20 Apr. 202024 Apr. 2020

Publikationsreihe

NameProceedings of IEEE/IFIP Network Operations and Management Symposium 2020: Management in the Age of Softwarization and Artificial Intelligence, NOMS 2020

Konferenz

Konferenz2020 IEEE/IFIP Network Operations and Management Symposium, NOMS 2020
Land/GebietUngarn
OrtBudapest
Zeitraum20/04/2024/04/20

Fingerprint

Untersuchen Sie die Forschungsthemen von „Deep Clustering of Mobile Network Data with Sparse Autoencoders“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren