Deep Anomaly Detection on Tennessee Eastman Process Data

Fabian Hartung, Billy Joe Franks, Tobias Michels, Dennis Wagner, Philipp Liznerski, Steffen Reithermann, Sophie Fellenz, Fabian Jirasek, Maja Rudolph, Daniel Neider, Heike Leitte, Chen Song, Benjamin Kloepper, Stephan Mandt, Michael Bortz, Jakob Burger, Hans Hasse, Marius Kloft

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

3 Zitate (Scopus)

Abstract

This paper provides the first comprehensive evaluation and analysis of modern (deep-learning-based) unsupervised anomaly detection methods for chemical process data. We focus on the Tennessee Eastman process dataset, a standard litmus test to benchmark anomaly detection methods for nearly three decades. Our extensive study will facilitate choosing appropriate anomaly detection methods in industrial applications. From the benchmark, we conclude that reconstruction-based methods are the methods of choice, followed by generative and forecasting-based methods.

OriginalspracheEnglisch
Seiten (von - bis)1077-1082
Seitenumfang6
FachzeitschriftChemie-Ingenieur-Technik
Jahrgang95
Ausgabenummer7
DOIs
PublikationsstatusVeröffentlicht - 1 Juli 2023

Fingerprint

Untersuchen Sie die Forschungsthemen von „Deep Anomaly Detection on Tennessee Eastman Process Data“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren