Deep Active Cross-Modal Visuo-Tactile Transfer Learning for Robotic Object Recognition

Prajval Kumar Murali, Cong Wang, Dongheui Lee, Ravinder Dahiya, Mohsen Kaboli

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

14 Zitate (Scopus)

Abstract

We propose for the first time, a novel deep active visuo-tactile cross-modal full-fledged framework for object recognition by autonomous robotic systems. Our proposed network xAVTNet is actively trained with labelled point clouds from a vision sensor with one robot and tested with an active tactile perception strategy to recognise objects never touched before using another robot. We propose a novel visuo-tactile loss (VTLoss) to minimise the discrepancy between the visual and tactile domains for unsupervised domain adaptation. Our framework leverages the strengths of deep neural networks for cross-modal recognition along with active perception and active learning strategies for increased efficiency by minimising redundant data collection. Our method is extensively evaluated on a real robotic system and compared against baselines and other state-of-art approaches. We demonstrate clear outperformance in recognition accuracy compared to the state-of-art visuo-tactile cross-modal recognition method.

OriginalspracheEnglisch
Seiten (von - bis)9557-9564
Seitenumfang8
FachzeitschriftIEEE Robotics and Automation Letters
Jahrgang7
Ausgabenummer4
DOIs
PublikationsstatusVeröffentlicht - 1 Okt. 2022
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „Deep Active Cross-Modal Visuo-Tactile Transfer Learning for Robotic Object Recognition“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren