TY - JOUR
T1 - Decoupling of subsoil carbon and nitrogen dynamics after long-term crop rotation and fertilization
AU - Hobley, Eleanor U.
AU - Honermeier, Bernd
AU - Don, Axel
AU - Gocke, Martina I.
AU - Amelung, Wulf
AU - Kögel-Knabner, Ingrid
N1 - Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2018/10/1
Y1 - 2018/10/1
N2 - Enhancing global soil organic carbon storage by 4 per mille (‰) per annum would be enough to halt current net greenhouse gas emissions, but this goal seems lofty for conventional agriculture, which frequently results in soil organic carbon and nitrogen losses. Replacing mineral nitrogen with organic nitrogen sources may benefit soil carbon and nitrogen cycling in agricultural soils, but long-term effects are yet to be clearly demonstrated, especially in soils of high natural fertility. Here we report the effects of 34 years of legumes (crimson clover, fava beans) and non-legumes (maize) in rotation combined with different fertilization regimes (no fertilization, PK fertilization, NPK fertilization) on soil carbon and nitrogen storage throughout the uppermost meter of the soil profile. Fava beans did not enhance profile carbon storage. However, fava beans induced positive effects on subsoil nitrogen cycling, with lower subsoil nitrogen densities indicating lower nitrogen leaching potential. Incorporating a clover green mulch every 4 years enhanced organic carbon storage by an average of 4.1‰ per annum down the full meter of soil compared with a conventional maize rotation, but only combined with phosphorus and potassium fertilization. The enhancement was detected below the plough-horizon, indicating that merely sampling topsoil is insufficient to assess soil carbon dynamics in these arable soils. In contrast, maize contributed only a small portion to SOC, with subsoil C contributions negligible. These results indicate that a careful combination of long-term, site-adapted crop and fertilization management strategies can help enhance SOC storage in naturally fertile soils without apparent C deficit.
AB - Enhancing global soil organic carbon storage by 4 per mille (‰) per annum would be enough to halt current net greenhouse gas emissions, but this goal seems lofty for conventional agriculture, which frequently results in soil organic carbon and nitrogen losses. Replacing mineral nitrogen with organic nitrogen sources may benefit soil carbon and nitrogen cycling in agricultural soils, but long-term effects are yet to be clearly demonstrated, especially in soils of high natural fertility. Here we report the effects of 34 years of legumes (crimson clover, fava beans) and non-legumes (maize) in rotation combined with different fertilization regimes (no fertilization, PK fertilization, NPK fertilization) on soil carbon and nitrogen storage throughout the uppermost meter of the soil profile. Fava beans did not enhance profile carbon storage. However, fava beans induced positive effects on subsoil nitrogen cycling, with lower subsoil nitrogen densities indicating lower nitrogen leaching potential. Incorporating a clover green mulch every 4 years enhanced organic carbon storage by an average of 4.1‰ per annum down the full meter of soil compared with a conventional maize rotation, but only combined with phosphorus and potassium fertilization. The enhancement was detected below the plough-horizon, indicating that merely sampling topsoil is insufficient to assess soil carbon dynamics in these arable soils. In contrast, maize contributed only a small portion to SOC, with subsoil C contributions negligible. These results indicate that a careful combination of long-term, site-adapted crop and fertilization management strategies can help enhance SOC storage in naturally fertile soils without apparent C deficit.
KW - Cropping
KW - Isotopes
KW - Land management
KW - Legumes
KW - Nitrogen cycle
KW - Soil organic carbon
UR - http://www.scopus.com/inward/record.url?scp=85049439867&partnerID=8YFLogxK
U2 - 10.1016/j.agee.2018.06.021
DO - 10.1016/j.agee.2018.06.021
M3 - Article
AN - SCOPUS:85049439867
SN - 0167-8809
VL - 265
SP - 363
EP - 373
JO - Agriculture, Ecosystems and Environment
JF - Agriculture, Ecosystems and Environment
ER -