Deconfounding Legal Judgment Prediction for European Court of Human Rights Cases Towards Better Alignment with Experts

T. Y.S.S. Santosh, Shanshan Xu, Oana Ichim, Matthias Grabmair

Publikation: KonferenzbeitragPapierBegutachtung

14 Zitate (Scopus)

Abstract

This work demonstrates that Legal Judgement Prediction systems without expert-informed adjustments can be vulnerable to shallow, distracting surface signals that arise from corpus construction, case distribution, and confounding factors. To mitigate this, we use domain expertise to strategically identify statistically predictive but legally irrelevant information. We adopt adversarial training to prevent the system from relying on it. We evaluate our deconfounded models by employing interpretability techniques and comparing to expert annotations. Quantitative experiments and qualitative analysis show that our deconfounded model consistently aligns better with expert rationales than baselines trained for prediction only. We further contribute a set of reference expert annotations to the validation and testing partitions of an existing benchmark dataset of European Court of Human Rights cases.

OriginalspracheEnglisch
Seiten1120-1138
Seitenumfang19
PublikationsstatusVeröffentlicht - 2022
Veranstaltung2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022 - Abu Dhabi, Vereinigte Arabische Emirate
Dauer: 7 Dez. 202211 Dez. 2022

Konferenz

Konferenz2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022
Land/GebietVereinigte Arabische Emirate
OrtAbu Dhabi
Zeitraum7/12/2211/12/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Deconfounding Legal Judgment Prediction for European Court of Human Rights Cases Towards Better Alignment with Experts“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren