De-novo reconstruction and identification of transcriptional gene regulatory network modules differentiating single-cell clusters

Mhaned Oubounyt, Maria L. Elkjaer, Tanja Laske, Alexander G.B. Grønning, Marcus J. Moeller, Jan Baumbach

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

2 Zitate (Scopus)

Abstract

Single-cell RNA sequencing (scRNA-seq) technology provides an unprecedented opportunity to understand gene functions and interactions at single-cell resolution. While computational tools for scRNA-seq data analysis to decipher differential gene expression profiles and differential pathway expression exist, we still lack methods to learn differential regulatory disease mechanisms directly from the single-cell data. Here, we provide a new methodology, named DiNiro, to unravel such mechanisms de novo and report them as small, easily interpretable transcriptional regulatory network modules. We demonstrate that DiNiro is able to uncover novel, relevant, and deep mechanistic models that not just predict but explain differential cellular gene expression programs. DiNiro is available at https://exbio.wzw.tum.de/diniro/.

OriginalspracheEnglisch
Aufsatznummerlqad018
FachzeitschriftNAR Genomics and Bioinformatics
Jahrgang5
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - 1 März 2023
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „De-novo reconstruction and identification of transcriptional gene regulatory network modules differentiating single-cell clusters“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren