Data transformation and semantic log purging for process mining

Linh Thao Ly, Conrad Indiono, Jürgen Mangler, Stefanie Rinderle-Ma

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

35 Zitate (Scopus)

Abstract

Existing process mining approaches are able to tolerate a certain degree of noise in the process log. However, processes that contain infrequent paths, multiple (nested) parallel branches, or have been changed in an ad-hoc manner, still pose major challenges. For such cases, process mining typically returns spaghetti-models, that are hardly usable even as a starting point for process (re-)design. In this paper, we address these challenges by introducing data transformation and pre-processing steps that improve and ensure the quality of mined models for existing process mining approaches. We propose the concept of semantic log purging, the cleaning of logs based on domain specific constraints utilizing semantic knowledge which typically complements processes. Furthermore we demonstrate the feasibility and effectiveness of the approach based on a case study in the higher education domain. We think that semantic log purging will enable process mining to yield better results, thus giving process (re-)designers a valuable tool.

OriginalspracheEnglisch
TitelAdvanced Information Systems Engineering - 24th International Conference, CAiSE 2012, Proceedings
Seiten238-253
Seitenumfang16
DOIs
PublikationsstatusVeröffentlicht - 2012
Extern publiziertJa
Veranstaltung24th International Conference on Advanced Information Systems Engineering, CAiSE 2012 - Gdansk, Polen
Dauer: 25 Juni 201229 Juni 2012

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band7328 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz24th International Conference on Advanced Information Systems Engineering, CAiSE 2012
Land/GebietPolen
OrtGdansk
Zeitraum25/06/1229/06/12

Fingerprint

Untersuchen Sie die Forschungsthemen von „Data transformation and semantic log purging for process mining“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren