TY - GEN
T1 - Data-Driven Spatio-Temporal Scaling of Travel Times for AMoD Simulations
AU - Syed, Arslan Ali
AU - Zhang, Yunfei
AU - Bogenberger, Klaus
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - With the widespread adoption of mobility-on-demand (MoD) services and the advancements in autonomous vehicle (AV) technology, the research interest into the AVs based MoD (AMoD) services has grown immensely. Often agent-based simulation frameworks are used to study the AMoD services using the trip data of current Taxi or MoD services. For reliable results of AMoD simulations, a realistic city network and travel times play a crucial part. However, many times the researchers do not have access to the actual network state corresponding to the trip data used for AMoD simulations reducing the reliability of results. Therefore, this paper introduces a spatio-temporal optimization strategy for scaling the link-level network travel times using the simulated trip data without additional data sources on the network state. The method is tested on the widely used New York City (NYC) Taxi data and shows that the travel times produced using the scaled network are very close to the recorded travel times in the original data. Additionally, the paper studies the performance differences of AMoD simulation when the scaled network is used. The results indicate that realistic travel times can significantly impact AMoD simulation outcomes.
AB - With the widespread adoption of mobility-on-demand (MoD) services and the advancements in autonomous vehicle (AV) technology, the research interest into the AVs based MoD (AMoD) services has grown immensely. Often agent-based simulation frameworks are used to study the AMoD services using the trip data of current Taxi or MoD services. For reliable results of AMoD simulations, a realistic city network and travel times play a crucial part. However, many times the researchers do not have access to the actual network state corresponding to the trip data used for AMoD simulations reducing the reliability of results. Therefore, this paper introduces a spatio-temporal optimization strategy for scaling the link-level network travel times using the simulated trip data without additional data sources on the network state. The method is tested on the widely used New York City (NYC) Taxi data and shows that the travel times produced using the scaled network are very close to the recorded travel times in the original data. Additionally, the paper studies the performance differences of AMoD simulation when the scaled network is used. The results indicate that realistic travel times can significantly impact AMoD simulation outcomes.
UR - http://www.scopus.com/inward/record.url?scp=85186506482&partnerID=8YFLogxK
U2 - 10.1109/ITSC57777.2023.10422313
DO - 10.1109/ITSC57777.2023.10422313
M3 - Conference contribution
AN - SCOPUS:85186506482
T3 - IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC
SP - 3583
EP - 3588
BT - 2023 IEEE 26th International Conference on Intelligent Transportation Systems, ITSC 2023
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 26th IEEE International Conference on Intelligent Transportation Systems, ITSC 2023
Y2 - 24 September 2023 through 28 September 2023
ER -