Data driven radar detection models: A comparison of artificial neural networks and non parametric density estimators on synthetically generated radar data

Thomas Eder, Rami Hachicha, Houssem Sellami, Carlo Van Driesten, Erwin Biebl

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

7 Zitate (Scopus)

Abstract

A rapid and agile development in the field of autonomous driving requires in particular the use of simulation. In order to ensure functional safety even in consequence of sensory defects, measurement deviations, or an incorrect environment model it is necessary to implement sensor models. Various data driven sensor modeling approaches, which are of particular interest for car manufacturers, have been introduced. In this paper we compare the learning capabilities of two different modeling approaches: Deep generative networks and non parametric density estimators. For comparative purposes and to give a detailed and realistic insight of existing strengths and weaknesses of each approach we use an, beyond the current state of the art, algorithm to generate a synthetic dataset.

OriginalspracheEnglisch
Titel2019 Kleinheubach Conference, KHB 2019
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9783948571009
PublikationsstatusVeröffentlicht - Sept. 2019
Veranstaltung2019 Kleinheubach Conference, KHB 2019 - Miltenberg, Deutschland
Dauer: 23 Sept. 201925 Sept. 2019

Publikationsreihe

Name2019 Kleinheubach Conference, KHB 2019

Konferenz

Konferenz2019 Kleinheubach Conference, KHB 2019
Land/GebietDeutschland
OrtMiltenberg
Zeitraum23/09/1925/09/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „Data driven radar detection models: A comparison of artificial neural networks and non parametric density estimators on synthetically generated radar data“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren