Data-driven Force Observer for Human-Robot Interaction with Series Elastic Actuators using Gaussian Processes

Samuel Tesfazgi, Markus Keßler, Emilio Trigili, Armin Lederer, Sandra Hirche

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Ensuring safety and adapting to the user's behavior are of paramount importance in physical human-robot interaction. Thus, incorporating elastic actuators in the robot's mechanical design has become popular, since it offers intrinsic compliance and additionally provide a coarse estimate for the interaction force by measuring the deformation of the elastic components. While observer-based methods have been shown to improve these estimates, they rely on accurate models of the system, which are challenging to obtain in complex operating environments. In this work, we overcome this issue by learning the unknown dynamics components using Gaussian process (GP) regression. By employing the learned model in a Bayesian filtering framework, we improve the estimation accuracy and additionally obtain an observer that explicitly considers local model uncertainty in the confidence measure of the state estimate. Furthermore, we derive guaranteed estimation error bounds, thus, facilitating the use in safety-critical applications. We demonstrate the effectiveness of the proposed approach experimentally in a human-exoskeleton interaction scenario.

OriginalspracheEnglisch
Titel2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten11849-11856
Seitenumfang8
ISBN (elektronisch)9798350377705
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024 - Abu Dhabi, Vereinigte Arabische Emirate
Dauer: 14 Okt. 202418 Okt. 2024

Publikationsreihe

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (elektronisch)2153-0866

Konferenz

Konferenz2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
Land/GebietVereinigte Arabische Emirate
OrtAbu Dhabi
Zeitraum14/10/2418/10/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Data-driven Force Observer for Human-Robot Interaction with Series Elastic Actuators using Gaussian Processes“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren