Data-Driven Controller Synthesis of Unknown Nonlinear Polynomial Systems via Control Barrier Certificates

Ameneh Nejati, Bingzhuo Zhong, Marco Caccamo, Majid Zamani

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

12 Zitate (Scopus)

Abstract

In this work, we propose a data-driven approach to synthesize safety controllers for continuous-time nonlinear polynomial-type systems with unknown dynamics. The proposed framework is based on notions of so-called control barrier certificates, constructed from data while providing a guaranteed confidence of 1 on the safety of unknown systems. Under a certain rank condition, we synthesize polynomial state-feedback controllers to ensure the safety of the unknown system only via a single trajectory collected from it. We demonstrate the effectiveness of our proposed results by applying them to a nonlinear polynomial-type system with unknown dynamics.

OriginalspracheEnglisch
Seiten (von - bis)763-776
Seitenumfang14
FachzeitschriftProceedings of Machine Learning Research
Jahrgang168
PublikationsstatusVeröffentlicht - 2022
Veranstaltung4th Annual Learning for Dynamics and Control Conference, L4DC 2022 - Stanford, USA/Vereinigte Staaten
Dauer: 23 Juni 202224 Juni 2022

Fingerprint

Untersuchen Sie die Forschungsthemen von „Data-Driven Controller Synthesis of Unknown Nonlinear Polynomial Systems via Control Barrier Certificates“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren