Data compression for quantum machine learning

Rohit Dilip, Yu Jie Liu, Adam Smith, Frank Pollmann

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

30 Zitate (Scopus)

Abstract

The advent of noisy-intermediate scale quantum computers has introduced the exciting possibility of achieving quantum speedups in machine learning tasks. These devices, however, are composed of a small number of qubits and can faithfully run only short circuits. This puts many proposed approaches for quantum machine learning beyond currently available devices. We address the problem of compressing classical data into efficient representations on quantum devices. Our proposed methods allow both the required number of qubits and depth of the quantum circuit to be tuned. We achieve this by using a correspondence between matrix-product states and quantum circuits and further propose a hardware-efficient quantum circuit approach, which we benchmark on the Fashion-MNIST dataset. Finally, we demonstrate that a quantum circuit-based classifier can achieve competitive accuracy with current tensor learning methods using only 11 qubits.

OriginalspracheEnglisch
Aufsatznummer043007
FachzeitschriftPhysical Review Research
Jahrgang4
Ausgabenummer4
DOIs
PublikationsstatusVeröffentlicht - Okt. 2022

Fingerprint

Untersuchen Sie die Forschungsthemen von „Data compression for quantum machine learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren