Data Blocks: Hybrid OLTP and OLAP on compressed storage using both vectorization and compilation

Harald Lang, Tobias Mühlbauer, Florian Funke, Peter Boncz, Thomas Neumann, Alfons Kemper

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

111 Zitate (Scopus)

Abstract

This work aims at reducing the main-memory footprint in high performance hybrid OLTP&OLAP databases, while retaining high query performance and transactional throughput. For this purpose, an innovative compressed columnar storage format for cold data, called Data Blocks is introduced. Data Blocks further incorporate a new light-weight index structure called Positional SMA that narrows scan ranges within Data Blocks even if the entire block cannot be ruled out. To achieve highest OLTP performance, the compression schemes of Data Blocks are very light-weight, such that OLTP transactions can still quickly access individual tuples. This sets our storage scheme apart from those used in specialized analytical databases where data must usually be bit-unpacked. Up to now, high-performance analytical systems use either vectorized query execution or "just-in-time" (JIT) query compilation. The fine-grained adaptivity of Data Blocks necessitates the integration of the best features of each approach by an interpreted vectorized scan subsystem feeding into JIT-compiled query pipelines. Experimental evaluation of HyPer, our full-edged hybrid OLTP&OLAP database system, shows that Data Blocks accelerate performance on a variety of query workloads while retaining high transaction throughput.

OriginalspracheEnglisch
TitelSIGMOD 2016 - Proceedings of the 2016 International Conference on Management of Data
Herausgeber (Verlag)Association for Computing Machinery
Seiten311-326
Seitenumfang16
ISBN (elektronisch)9781450335317
DOIs
PublikationsstatusVeröffentlicht - 26 Juni 2016
Veranstaltung2016 ACM SIGMOD International Conference on Management of Data, SIGMOD 2016 - San Francisco, USA/Vereinigte Staaten
Dauer: 26 Juni 20161 Juli 2016

Publikationsreihe

NameProceedings of the ACM SIGMOD International Conference on Management of Data
Band26-June-2016
ISSN (Print)0730-8078

Konferenz

Konferenz2016 ACM SIGMOD International Conference on Management of Data, SIGMOD 2016
Land/GebietUSA/Vereinigte Staaten
OrtSan Francisco
Zeitraum26/06/161/07/16

Fingerprint

Untersuchen Sie die Forschungsthemen von „Data Blocks: Hybrid OLTP and OLAP on compressed storage using both vectorization and compilation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren