Data-Aided MU-MIMO Channel Estimation Utilizing Gaussian Mixture Models

Franz Weisser, Dominik Semmler, Nurettin Turan, Wolfgang Utschick

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

This work extends two previously proposed semi-blind channel estimators to a more general multi-user multiple-input-multiple-output (MU-MIMO) system. These estimators utilize data symbols in addition to pilot symbols to enhance the channel estimation quality. Based on all received signals, a subspace is calculated, which enhances the Gaussian mixture model based channel estimator. To estimate this subspace, we consider the inherent additional degrees of freedom in terms of precoding in MU-MIMO systems. Numerical simulations for different scenarios show that the extended methods outperform the studied state-of-the-art channel estimators.

OriginalspracheEnglisch
TitelICC 2024 - IEEE International Conference on Communications
Redakteure/-innenMatthew Valenti, David Reed, Melissa Torres
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten6684-6689
Seitenumfang6
ISBN (elektronisch)9781728190549
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung59th Annual IEEE International Conference on Communications, ICC 2024 - Denver, USA/Vereinigte Staaten
Dauer: 9 Juni 202413 Juni 2024

Publikationsreihe

NameIEEE International Conference on Communications
ISSN (Print)1550-3607

Konferenz

Konferenz59th Annual IEEE International Conference on Communications, ICC 2024
Land/GebietUSA/Vereinigte Staaten
OrtDenver
Zeitraum9/06/2413/06/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Data-Aided MU-MIMO Channel Estimation Utilizing Gaussian Mixture Models“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren