DATA-AIDED CHANNEL ESTIMATION UTILIZING GAUSSIAN MIXTURE MODELS

Franz Weißer, Nurettin Turan, Dominik Semmler, Wolfgang Utschick

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

In this work, we propose two methods that utilize data symbols in addition to pilot symbols for improved channel estimation quality in a multi-user system, so-called semi-blind channel estimation. To this end, a subspace is estimated based on all received symbols and utilized to improve the estimation quality of a Gaussian mixture model-based channel estimator, which solely uses pilot symbols for channel estimation. Both of the proposed approaches allow for parallelization. Even the precomputation of estimation filters, which is beneficial in terms of computational complexity, is enabled by one of the proposed methods. Numerical simulations for real channel measurement data available to us show that the proposed methods outperform the studied state-of-the-art channel estimators.

OriginalspracheEnglisch
Titel2024 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten8886-8890
Seitenumfang5
ISBN (elektronisch)9798350344851
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung2024 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024 - Seoul, Südkorea
Dauer: 14 Apr. 202419 Apr. 2024

Publikationsreihe

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN (Print)1520-6149

Konferenz

Konferenz2024 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024
Land/GebietSüdkorea
OrtSeoul
Zeitraum14/04/2419/04/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „DATA-AIDED CHANNEL ESTIMATION UTILIZING GAUSSIAN MIXTURE MODELS“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren