Cross-Task Transfer for Geotagged Audiovisual Aerial Scene Recognition

Di Hu, Xuhong Li, Lichao Mou, Pu Jin, Dong Chen, Liping Jing, Xiaoxiang Zhu, Dejing Dou

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

23 Zitate (Scopus)

Abstract

Aerial scene recognition is a fundamental task in remote sensing and has recently received increased interest. While the visual information from overhead images with powerful models and efficient algorithms yields considerable performance on scene recognition, it still suffers from the variation of ground objects, lighting conditions etc. Inspired by the multi-channel perception theory in cognition science, in this paper, for improving the performance on the aerial scene recognition, we explore a novel audiovisual aerial scene recognition task using both images and sounds as input. Based on an observation that some specific sound events are more likely to be heard at a given geographic location, we propose to exploit the knowledge from the sound events to improve the performance on the aerial scene recognition. For this purpose, we have constructed a new dataset named AuDio Visual Aerial sceNe reCognition datasEt (ADVANCE). With the help of this dataset, we evaluate three proposed approaches for transferring the sound event knowledge to the aerial scene recognition task in a multimodal learning framework, and show the benefit of exploiting the audio information for the aerial scene recognition. The source code is publicly available for reproducibility purposes. (https://github.com/DTaoo/Multimodal-Aerial-Scene-Recognition).

OriginalspracheEnglisch
TitelComputer Vision – ECCV 2020 - 16th European Conference, 2020, Proceedings
Redakteure/-innenAndrea Vedaldi, Horst Bischof, Thomas Brox, Jan-Michael Frahm
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten68-84
Seitenumfang17
ISBN (Print)9783030585853
DOIs
PublikationsstatusVeröffentlicht - 2020
Veranstaltung16th European Conference on Computer Vision, ECCV 2020 - Glasgow, Großbritannien/Vereinigtes Königreich
Dauer: 23 Aug. 202028 Aug. 2020

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band12369 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz16th European Conference on Computer Vision, ECCV 2020
Land/GebietGroßbritannien/Vereinigtes Königreich
OrtGlasgow
Zeitraum23/08/2028/08/20

Fingerprint

Untersuchen Sie die Forschungsthemen von „Cross-Task Transfer for Geotagged Audiovisual Aerial Scene Recognition“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren