Creating digital twins of existing bridges through AI-based methods

M. Saeed Mafipour, Simon Vilgertshofer, André Borrmann

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

Bridges require regular inspection and maintenance during their service life, which is costly and time-consuming. Digital twins (DT), which incorporate a geometric-semantic model of an existing bridge, can support the operation and maintenance process. The process of creating such DT models can be based on Point cloud data (PCD), created via photogrammetry or laser scanning. However, the semantic segmentation of PCD and parametric modeling is a challenging process, which is nonetheless necessary to support DT modeling. This paper aims to propose a segmentation method that is the basis for a parametric modeling approach to enable the semi-automatic geometric modeling of bridges from PCD. To this end, metaheuristic algorithms, fuzzy C-mean clustering, and signal processing algorithms are used. The results of this paper show that the scan to BIM process of bridges can be automated to a large extent and provide a model that meets the industry's demand.

OriginalspracheEnglisch
TitelIABSE Symposium Prague, 2022
UntertitelChallenges for Existing and Oncoming Structures - Report
Herausgeber (Verlag)International Association for Bridge and Structural Engineering (IABSE)
Seiten727-734
Seitenumfang8
ISBN (elektronisch)9783857481833
PublikationsstatusVeröffentlicht - 2022
VeranstaltungIABSE Symposium Prague 2022: Challenges for Existing and Oncoming Structures - Prague, Tschechische Republik
Dauer: 25 Mai 202227 Mai 2022

Publikationsreihe

NameIABSE Symposium Prague, 2022: Challenges for Existing and Oncoming Structures - Report

Konferenz

KonferenzIABSE Symposium Prague 2022: Challenges for Existing and Oncoming Structures
Land/GebietTschechische Republik
OrtPrague
Zeitraum25/05/2227/05/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Creating digital twins of existing bridges through AI-based methods“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren