Correspondence-Free Material Reconstruction using Sparse Surface Constraints

Sebastian Weiss, Robert Maier, Daniel Cremers, Rudiger Westermann, Nils Thuerey

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

13 Zitate (Scopus)

Abstract

We present a method to infer physical material parameters, and even external boundaries, from the scanned motion of a homogeneous deformable object via the solution of an inverse problem. Parameters are estimated from real-world data sources such as sparse observations from a Kinect sensor without correspondences. We introduce a novel Lagrangian-Eulerian optimization formulation, including a cost function that penalizes differences to observations during an optimization run. This formulation matches correspondence-free, sparse observations from a single-view depth image with a finite element simulation of deformable bodies. In a number of tests using synthetic datasets and real-world measurements, we analyse the robustness of our approach and the convergence behavior of the numerical optimization scheme.

OriginalspracheEnglisch
Aufsatznummer9157678
Seiten (von - bis)4685-4694
Seitenumfang10
FachzeitschriftProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
DOIs
PublikationsstatusVeröffentlicht - 2020
Veranstaltung2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020 - Virtual, Online, USA/Vereinigte Staaten
Dauer: 14 Juni 202019 Juni 2020

Fingerprint

Untersuchen Sie die Forschungsthemen von „Correspondence-Free Material Reconstruction using Sparse Surface Constraints“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren