Abstract
We present a method to infer physical material parameters, and even external boundaries, from the scanned motion of a homogeneous deformable object via the solution of an inverse problem. Parameters are estimated from real-world data sources such as sparse observations from a Kinect sensor without correspondences. We introduce a novel Lagrangian-Eulerian optimization formulation, including a cost function that penalizes differences to observations during an optimization run. This formulation matches correspondence-free, sparse observations from a single-view depth image with a finite element simulation of deformable bodies. In a number of tests using synthetic datasets and real-world measurements, we analyse the robustness of our approach and the convergence behavior of the numerical optimization scheme.
Originalsprache | Englisch |
---|---|
Aufsatznummer | 9157678 |
Seiten (von - bis) | 4685-4694 |
Seitenumfang | 10 |
Fachzeitschrift | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
DOIs | |
Publikationsstatus | Veröffentlicht - 2020 |
Veranstaltung | 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020 - Virtual, Online, USA/Vereinigte Staaten Dauer: 14 Juni 2020 → 19 Juni 2020 |