TY - JOUR
T1 - Correction of the baseline fluctuations in the GEM-based ALICE TPC
AU - The ALICE TPC collaboration
AU - Alme, J.
AU - Alt, T.
AU - Andrei, C.
AU - Anguelov, V.
AU - Appelshäuser, H.
AU - Arslandok, M.
AU - Barnaföldi, G.
AU - Bartsch, E.
AU - Becht, P.
AU - Bellwied, R.
AU - Berdnikova, A.
AU - Bialas, N.
AU - Bialas, P.
AU - Biswas, S.
AU - Blidaru, B.
AU - Boldizsár, L.
AU - Bratrud, L.
AU - Braun-Munzinger, P.
AU - Bregant, M.
AU - Britton, C.
AU - Brucker, S.
AU - Brücken, E.
AU - Büsching, H.
AU - Soto Camacho, R.
AU - Castro, A.
AU - Chatzidaki, P.
AU - Christiansen, P.
AU - Clonts, L.
AU - Cormier, T.
AU - Dhankher, P.
AU - Dittrich, S.
AU - Ehlers, R.
AU - Ericson, M.
AU - Ezell, N.
AU - Fabbietti, L.
AU - Flor, F.
AU - Gaardhøje, J.
AU - Munhoz, M.
AU - Garabatos, C.
AU - Gasik, P.
AU - Geiger, T.
AU - Gera, I.
AU - Glässel, P.
AU - Goh, D.
AU - Grein, A.
AU - Gundem, T.
AU - Gunji, T.
AU - Habib, M.
AU - Hamagaki, H.
AU - Hamar, G.
N1 - Publisher Copyright:
© 2023 CERN for the benefit of the Alice collaboration.
PY - 2023/11/1
Y1 - 2023/11/1
N2 - To operate the ALICE Time Projection Chamber in continuous mode during the Run 3 and Run 4 data-taking periods of the Large Hadron Collider, the multi-wire proportional chamber-based readout was replaced with gas-electron multipliers. As expected, the detector performance is affected by the so-called common-mode effect, which leads to significant baseline fluctuations. A detailed study of the pulse shape with the new readout has revealed that it is also affected by ion tails. Since reconstruction and data compression are performed fully online, these effects must be corrected at the hardware level in the FPGA-based common readout units. The characteristics of the common-mode effect and of the ion tail, as well as the algorithms developed for their online correction, are described in this paper. The common-mode dependencies are studied using machine-learning techniques. Toy Monte Carlo simulations are performed to illustrate the importance of online corrections and to investigate the performance of the developed algorithms.
AB - To operate the ALICE Time Projection Chamber in continuous mode during the Run 3 and Run 4 data-taking periods of the Large Hadron Collider, the multi-wire proportional chamber-based readout was replaced with gas-electron multipliers. As expected, the detector performance is affected by the so-called common-mode effect, which leads to significant baseline fluctuations. A detailed study of the pulse shape with the new readout has revealed that it is also affected by ion tails. Since reconstruction and data compression are performed fully online, these effects must be corrected at the hardware level in the FPGA-based common readout units. The characteristics of the common-mode effect and of the ion tail, as well as the algorithms developed for their online correction, are described in this paper. The common-mode dependencies are studied using machine-learning techniques. Toy Monte Carlo simulations are performed to illustrate the importance of online corrections and to investigate the performance of the developed algorithms.
KW - Charge transport and multiplication in gas
KW - Electron multipliers (gas)
KW - Micropattern gaseous detectors (MSGC, GEM, THGEM, RETHGEM, MHSP, MICROPIC, MICROMEGAS, InGrid, etc)
KW - Time projection Chambers (TPC)
UR - http://www.scopus.com/inward/record.url?scp=85179176730&partnerID=8YFLogxK
U2 - 10.1088/1748-0221/18/11/P11021
DO - 10.1088/1748-0221/18/11/P11021
M3 - Article
AN - SCOPUS:85179176730
SN - 1748-0221
VL - 18
JO - Journal of Instrumentation
JF - Journal of Instrumentation
IS - 11
M1 - P11021
ER -