Cooperative Visual Pursuit Control with Learning of Position Dependent Target Motion via Gaussian Process

Junya Yamauchi, Marco Omainska, Thomas Beckers, Takeshi Hatanaka, Sandra Hirche, Masayuki Fujita

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

4 Zitate (Scopus)

Abstract

This paper considers a pursuit control based on cooperative target motion estimation by robotic networks equipped with visual sensors. First, we propose a cooperative pursuit control law with a vision-based observer using visual sensor networks, called networked visual motion observer. Then, we learn position dependent target motion by a Gaussian process and integrate it within the proposed control law. Second, we show that all rigid bodies converge to desired relative poses when at least one robot can obtain visual information of the target. Furthermore, we prove that the total estimation and control error is ultimately bounded with high probability when integrating a GP model. Finally, we demonstrate the effectiveness of the proposed control law through simulations.

OriginalspracheEnglisch
Titel60th IEEE Conference on Decision and Control, CDC 2021
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten2211-2217
Seitenumfang7
ISBN (elektronisch)9781665436595
DOIs
PublikationsstatusVeröffentlicht - 2021
Veranstaltung60th IEEE Conference on Decision and Control, CDC 2021 - Austin, USA/Vereinigte Staaten
Dauer: 13 Dez. 202117 Dez. 2021

Publikationsreihe

NameProceedings of the IEEE Conference on Decision and Control
Band2021-December
ISSN (Print)0743-1546
ISSN (elektronisch)2576-2370

Konferenz

Konferenz60th IEEE Conference on Decision and Control, CDC 2021
Land/GebietUSA/Vereinigte Staaten
OrtAustin
Zeitraum13/12/2117/12/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Cooperative Visual Pursuit Control with Learning of Position Dependent Target Motion via Gaussian Process“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren