Cooperative Learning with Gaussian Processes for Euler-Lagrange Systems Tracking Control Under Switching Topologies

Zewen Yang, Songbo Dong, Armin Lederer, Xiaobing Dai, Siyu Chen, Stefan Sosnowski, Georges Hattab, Sandra Hirche

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

This work presents an innovative learning-based approach to tackle the tracking control problem of Euler-Lagrange multi-agent systems with partially unknown dynamics operating under switching communication topologies. The approach leverages a correlation-aware cooperative al-gorithm framework built upon Gaussian process regression, which adeptly captures inter-agent correlations for uncertainty predictions. A standout feature is its exceptional efficiency in deriving the aggregation weights achieved by circumventing the computationally intensive posterior variance calculations. Through Lyapunov stability analysis, the distributed control law ensures bounded tracking errors with high probability. Simulation experiments validate the protocol's efficacy in effectively managing complex scenarios, establishing it as a promising solution for robust tracking control in multi-agent systems characterized by uncertain dynamics and dynamic communication structures.

OriginalspracheEnglisch
Titel2024 American Control Conference, ACC 2024
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten560-567
Seitenumfang8
ISBN (elektronisch)9798350382655
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung2024 American Control Conference, ACC 2024 - Toronto, Kanada
Dauer: 10 Juli 202412 Juli 2024

Publikationsreihe

NameProceedings of the American Control Conference
ISSN (Print)0743-1619

Konferenz

Konferenz2024 American Control Conference, ACC 2024
Land/GebietKanada
OrtToronto
Zeitraum10/07/2412/07/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Cooperative Learning with Gaussian Processes for Euler-Lagrange Systems Tracking Control Under Switching Topologies“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren