Convolutional Neural Networks with Layer Reuse

Okan Kopuklu, Maryam Babaee, Stefan Hormann, Gerhard Rigoll

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

11 Zitate (Scopus)

Abstract

A convolutional layer in a Convolutional Neural Network (CNN) consists of many filters which apply convolution operation to the input, capture some special patterns and pass the result to the next layer. If the same patterns also occur at the deeper layers of the network, why wouldn't the same convolutional filters be used also in those layers. In this paper, we propose a CNN architecture, Layer Reuse Network (LruNet), where the convolutional layers are used repeatedly without the need of introducing new layers to get a better performance. This approach introduces several advantages: (i) Considerable amount of parameters are saved since we are reusing the layers instead of introducing new layers, (ii) the Memory Access Cost (MAC) can be reduced since reused layer parameters can be fetched only once, (iii) the number of nonlinearities increases with layer reuse, and (iv) reused layers get gradient updates from multiple parts of the network. The proposed approach is evaluated on CIFAR-10, CIFAR-100 and Fashion-MNIST datasets for image classification task, and layer reuse improves the performance by 5.14%, 5.85% and 2.29%, respectively. The source code and pretrained models are publicly available 1.

OriginalspracheEnglisch
Titel2019 IEEE International Conference on Image Processing, ICIP 2019 - Proceedings
Herausgeber (Verlag)IEEE Computer Society
Seiten345-349
Seitenumfang5
ISBN (elektronisch)9781538662496
DOIs
PublikationsstatusVeröffentlicht - Sept. 2019
Veranstaltung26th IEEE International Conference on Image Processing, ICIP 2019 - Taipei, Taiwan
Dauer: 22 Sept. 201925 Sept. 2019

Publikationsreihe

NameProceedings - International Conference on Image Processing, ICIP
Band2019-September
ISSN (Print)1522-4880

Konferenz

Konferenz26th IEEE International Conference on Image Processing, ICIP 2019
Land/GebietTaiwan
OrtTaipei
Zeitraum22/09/1925/09/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „Convolutional Neural Networks with Layer Reuse“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren