Convex relaxations for binary image partitioning and perceptual grouping

Jens Keuchel, Christian Schellewald, Daniel Cremers, Christoph Schnörr

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

5 Zitate (Scopus)

Abstract

We consider approaches to computer vision problems which require the minimization of a global energy functional over binary variables and take into account both local similarity and spatial context. The combinatorial nature of such problems has lead to the design of various approximation algorithms in the past which often involve tuning parameters and tend to get trapped in local minima. In this context, we present a novel approach to the field of computer vision that amounts to solving a convex relaxation of the original problem without introducing any additional parameters. Numerical ground truth experiments reveal a relative error of the convex minimizer with respect to the global optimum of below 2% on the average. We apply our approach by discussing two specific problem instances related to image partitioning and perceptual grouping. Numerical experiments illustrate the quality of the approach which, in the partitioning case, compares favorably with established approaches like the ICM-algorithm.

OriginalspracheEnglisch
TitelPattern Recognition - 23rd DAGM Symposium, Proceedings
Redakteure/-innenBernd Radig, Stefan Florczyk
Herausgeber (Verlag)Springer Verlag
Seiten353-360
Seitenumfang8
ISBN (Print)3540425969
DOIs
PublikationsstatusVeröffentlicht - 2001
Extern publiziertJa
Veranstaltung23rd German Association for Pattern Recognition Symposium, DAGM 2001 - Munich, Deutschland
Dauer: 12 Sept. 200114 Sept. 2001

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band2191
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz23rd German Association for Pattern Recognition Symposium, DAGM 2001
Land/GebietDeutschland
OrtMunich
Zeitraum12/09/0114/09/01

Fingerprint

Untersuchen Sie die Forschungsthemen von „Convex relaxations for binary image partitioning and perceptual grouping“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren