Convergence of a fully discrete variational scheme for a thin-film equation

Horst Osberger, Daniel Matthes

Publikation: Beitrag in Buch/Bericht/KonferenzbandKapitelBegutachtung

8 Zitate (Scopus)

Abstract

This chapter is concerned with a rigorous convergence analysis of a fully dis-crete Lagrangian scheme for the Hele-Shaw flow, which is the fourth-order thin-film equation with linear mobility in one space dimension. The discretization is based on the equation's gradient flow structure in the L2 -Wasserstein metric. Apart from its Lagrangian character - which guarantees positivity and mass conservation - the main feature of our discretization is that it dissipates both the Dirichlet energy and the logarithmic entropy. The interplay between these two dissipations paves the way to proving convergence of the discrete approximations to a weak solution in the discrete-to-continuous limit. Thanks to the time-implicit character of the scheme, no CFL-type condition is needed. Numerical experiments illustrate the practicability of the scheme.

OriginalspracheEnglisch
TitelTopological Optimization and Optimal Transport
UntertitelIn the Applied Sciences
Herausgeber (Verlag)De Gruyter
Seiten356-399
Seitenumfang44
ISBN (elektronisch)9783110430417
ISBN (Print)9783110439267
PublikationsstatusVeröffentlicht - 7 Aug. 2017

Fingerprint

Untersuchen Sie die Forschungsthemen von „Convergence of a fully discrete variational scheme for a thin-film equation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren