Contradiction Management in Intent-driven Cognitive Autonomous RAN

Anubhab Banerjee, Stephen S. Mwanje, Georg Carle

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

7 Zitate (Scopus)

Abstract

Intent Based Networks (IBN) is a prominent feature in the design of the AI-enabled B5G networks. Intents are primarily used to transform the intention of a human operator into network configuration, operation, and maintenance strategies. Although IBN provides future network automation technologies, it also raises the risk of contradiction(s) in an intent which arises during the runtime and cannot be predicted or resolved beforehand. In this paper we propose a new design which helps to detect and remove contradiction(s) in the optimal way during the runtime and evaluate it. We evaluate our proposed solution in a simulation environment and also provide a brief overview of standardization impact of our work to show that it conforms with the worldwide mobile network standardization efforts.

OriginalspracheEnglisch
Titel2022 IFIP Networking Conference, IFIP Networking 2022
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9783903176485
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung2022 IFIP Networking Conference, IFIP Networking 2022 - Catania, Italien
Dauer: 13 Juni 202216 Juni 2022

Publikationsreihe

Name2022 IFIP Networking Conference, IFIP Networking 2022

Konferenz

Konferenz2022 IFIP Networking Conference, IFIP Networking 2022
Land/GebietItalien
OrtCatania
Zeitraum13/06/2216/06/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Contradiction Management in Intent-driven Cognitive Autonomous RAN“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren