Continuation-based learning algorithm for discrete-time cellular neural networks

Holger Magnussen, Georgios Papoutsis, Josef A. Nossek

Publikation: KonferenzbeitragPapierBegutachtung

5 Zitate (Scopus)

Abstract

The SGN-type nonlinearity of a standard Discrete-Time Cellular Neural Network (DTCNN) is replaced by a smooth, sigmoidal nonlinearity with variable gain. Therefore, the resulting dynamical system is fully differentiable. Bounds on gain of the sigmoidal function are given, so that the new, smooth system approximates the standard DTCNN within certain limits. A learning algorithm is proposed, which finds the template parameters for the standard DTCNN by gradually increasing the gain of the sigmoidal function.

OriginalspracheEnglisch
Seiten171-176
Seitenumfang6
PublikationsstatusVeröffentlicht - 1994
VeranstaltungProceedings of the 3rd IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94) - Rome, Italy
Dauer: 18 Dez. 199421 Dez. 1994

Konferenz

KonferenzProceedings of the 3rd IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)
OrtRome, Italy
Zeitraum18/12/9421/12/94

Fingerprint

Untersuchen Sie die Forschungsthemen von „Continuation-based learning algorithm for discrete-time cellular neural networks“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren