Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes

Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, Dieter Fox

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

147 Zitate (Scopus)

Abstract

Grasping unseen objects in unconstrained, cluttered environments is an essential skill for autonomous robotic manipulation. Despite recent progress in full 6-DoF grasp learning, existing approaches often consist of complex sequential pipelines that possess several potential failure points and run-times unsuitable for closed-loop grasping. Therefore, we propose an end-to-end network that efficiently generates a distribution of 6-DoF parallel-jaw grasps directly from a depth recording of a scene. Our novel grasp representation treats 3D points of the recorded point cloud as potential grasp contacts. By rooting the full 6-DoF grasp pose and width in the observed point cloud, we can reduce the dimensionality of our grasp representation to 4-DoF which greatly facilitates the learning process. Our class-agnostic approach is trained on 17 million simulated grasps and generalizes well to real world sensor data. In a robotic grasping study of unseen objects in structured clutter we achieve over 90% success rate, cutting the failure rate in half compared to a recent state-of-the-art method. Video of the real world experiments and code are available at https://research.nvidia.com/publication/2021-03_Contact-GraspNet%3A-Efficient.

OriginalspracheEnglisch
Titel2021 IEEE International Conference on Robotics and Automation, ICRA 2021
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten3133-3139
Seitenumfang7
ISBN (elektronisch)9781728190778
DOIs
PublikationsstatusVeröffentlicht - 2021
Veranstaltung2021 IEEE International Conference on Robotics and Automation, ICRA 2021 - Xi'an, China
Dauer: 30 Mai 20215 Juni 2021

Publikationsreihe

NameProceedings - IEEE International Conference on Robotics and Automation
Band2021-May
ISSN (Print)1050-4729

Konferenz

Konferenz2021 IEEE International Conference on Robotics and Automation, ICRA 2021
Land/GebietChina
OrtXi'an
Zeitraum30/05/215/06/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren