TY - JOUR
T1 - Consumption and alteration of different organic matter sources during remediation of a sandy sulfuric soil
AU - Kölbl, Angelika
AU - Bucka, Franziska
AU - Marschner, Petra
AU - Mosley, Luke
AU - Fitzpatrick, Rob
AU - Schulz, Stefanie
AU - Lueders, Tillmann
AU - Kögel-Knabner, Ingrid
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2019/8/1
Y1 - 2019/8/1
N2 - Saturated acid sulfate soils with hypersulfidic material are productive wetland soils, but when they dry, they generate large amounts of sulfuric acid due to oxidation of pyrite to form sulfuric material (pH <4) and consequently sulfuric soils. After re-saturation of sulfuric soils and thus the re-establishment of reduced conditions, activity of sulfate reducing bacteria (SRB) can lead to a renewed formation of Fe sulfides and pH increase. Many SRB are heterotrophic and require sufficient available organic matter; however, little is known about OC consumption and changes of the composition of organic substrates during the amelioration process. To investigate remediation of a sandy, OC-poor sulfuric soil (initial pH = 2.5), short-term anoxic incubation experiments over a period of approx. 10 weeks were conducted after re-submerging under controlled laboratory conditions. We tested different organic matter quantities between 10% up to 200% of the native soil OC content. Besides wheat straw, we used lactate additions to test if this selectively promotes the activity of SRB, and thus, accelerates sulfate reduction and pH neutralization. The results showed that OC additions of ≥50% of native soil OC content and pre-adjustment of pH to values ≥5.0 were necessary to subsequently enable microbial reduction reactions to occur, which increased the pH to values ≥5.5. OC additions of ≥100% instead of 50% of native soil OC as wheat straw led to quicker changes of redox and pH values, to slightly higher microbial activity as indicated by CO2 release, and to higher proportions of newly-formed mineral-associated OC. The addition of OC as lactate solution to promote specifically SRB was only successful in combination with wheat straw addition. Here, the presence of lactate led to the quickest changes of pH and redox values and resulted in pH ≥7 and redox values ≤ −300 mV due to an active microbial population. Our results indicate that a diverse microbial community is more important for successful remediation than a selective promotion of SRB.
AB - Saturated acid sulfate soils with hypersulfidic material are productive wetland soils, but when they dry, they generate large amounts of sulfuric acid due to oxidation of pyrite to form sulfuric material (pH <4) and consequently sulfuric soils. After re-saturation of sulfuric soils and thus the re-establishment of reduced conditions, activity of sulfate reducing bacteria (SRB) can lead to a renewed formation of Fe sulfides and pH increase. Many SRB are heterotrophic and require sufficient available organic matter; however, little is known about OC consumption and changes of the composition of organic substrates during the amelioration process. To investigate remediation of a sandy, OC-poor sulfuric soil (initial pH = 2.5), short-term anoxic incubation experiments over a period of approx. 10 weeks were conducted after re-submerging under controlled laboratory conditions. We tested different organic matter quantities between 10% up to 200% of the native soil OC content. Besides wheat straw, we used lactate additions to test if this selectively promotes the activity of SRB, and thus, accelerates sulfate reduction and pH neutralization. The results showed that OC additions of ≥50% of native soil OC content and pre-adjustment of pH to values ≥5.0 were necessary to subsequently enable microbial reduction reactions to occur, which increased the pH to values ≥5.5. OC additions of ≥100% instead of 50% of native soil OC as wheat straw led to quicker changes of redox and pH values, to slightly higher microbial activity as indicated by CO2 release, and to higher proportions of newly-formed mineral-associated OC. The addition of OC as lactate solution to promote specifically SRB was only successful in combination with wheat straw addition. Here, the presence of lactate led to the quickest changes of pH and redox values and resulted in pH ≥7 and redox values ≤ −300 mV due to an active microbial population. Our results indicate that a diverse microbial community is more important for successful remediation than a selective promotion of SRB.
KW - Acid sulfate soil
KW - Anoxic incubation
KW - Non mineral-associated OC
KW - OC consumption
KW - Solid-state C NMR spectroscopy
UR - http://www.scopus.com/inward/record.url?scp=85064280250&partnerID=8YFLogxK
U2 - 10.1016/j.geoderma.2019.04.006
DO - 10.1016/j.geoderma.2019.04.006
M3 - Article
AN - SCOPUS:85064280250
SN - 0016-7061
VL - 347
SP - 220
EP - 232
JO - Geoderma
JF - Geoderma
ER -