Constrained Long-Horizon Direct Model Predictive Control for Synchronous Reluctance Motor Drives

L. Ortombina, E. Liegmann, P. Karamanakos, F. Tinazzi, M. Zigliotto, R. Kennel

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

7 Zitate (Scopus)

Abstract

A finite control set model predictive control strategy for the control of the stator currents of a synchronous reluctance motor driven by a three-level neutral point clamped inverter is presented in this paper. The presented algorithm minimizes the stator current distortions while operating the drive system at switching frequencies of a few hundred Hertz. Moreover, the power electronic converter is protected by overcurrents and/or overvoltages owing to a hard constraint imposed on the stator currents. To efficiently solve the underlying integer nonlinear optimization problem a sphere decoding algorithm serves as optimizer. To this end, a numerical calculation of the unconstrained solution of the optimization problem is proposed, along with modifications in the algorithm proposed in [1] so as to meet the above-mentioned control objectives. Simulation results show the effectiveness of the proposed control algorithm.

OriginalspracheEnglisch
Titel2018 IEEE 19th Workshop on Control and Modeling for Power Electronics, COMPEL 2018
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (Print)9781538655412
DOIs
PublikationsstatusVeröffentlicht - 10 Sept. 2018
Veranstaltung19th IEEE Workshop on Control and Modeling for Power Electronics, COMPEL 2018 - Padova, Italien
Dauer: 25 Juni 201828 Juni 2018

Publikationsreihe

Name2018 IEEE 19th Workshop on Control and Modeling for Power Electronics, COMPEL 2018

Konferenz

Konferenz19th IEEE Workshop on Control and Modeling for Power Electronics, COMPEL 2018
Land/GebietItalien
OrtPadova
Zeitraum25/06/1828/06/18

Fingerprint

Untersuchen Sie die Forschungsthemen von „Constrained Long-Horizon Direct Model Predictive Control for Synchronous Reluctance Motor Drives“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren