Congestion Hot Spot Identification using Automated Pattern Recognition

Lisa Kessler, Barbara Karl, Klaus Bogenberger

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

3 Zitate (Scopus)

Abstract

This paper introduces a methodology which identifies congestion hot spots for individual congestion types. The proposed algorithm first isolates coherent congested clusters out of a spatio-temporally discretized speed matrix. Then, virtually driven trajectories which pass through the respective congestion area are calculated and their speed profiles are analyzed. A congestion type is assigned to each trajectory and thereafter, a congestion type for the overall cluster is determined. Considering the spatial and temporal start and end points of each cluster along with its assigned congestion type, accumulated occurrences of congestion are determined. The methodology is applied to data derived from speed sensors along the Bavarian freeway A9 in Germany. The results show a high share of Stop and Go traffic in the Greater Munich Area. All over the considered stretch, Jam Waves occur frequently, limited to a few locations but widely spread in time.

OriginalspracheEnglisch
Titel2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9781728141497
DOIs
PublikationsstatusVeröffentlicht - 20 Sept. 2020
Veranstaltung23rd IEEE International Conference on Intelligent Transportation Systems, ITSC 2020 - Rhodes, Griechenland
Dauer: 20 Sept. 202023 Sept. 2020

Publikationsreihe

Name2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020

Konferenz

Konferenz23rd IEEE International Conference on Intelligent Transportation Systems, ITSC 2020
Land/GebietGriechenland
OrtRhodes
Zeitraum20/09/2023/09/20

Fingerprint

Untersuchen Sie die Forschungsthemen von „Congestion Hot Spot Identification using Automated Pattern Recognition“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren