Conflict forecasting using remote sensing data: An application to the Syrian civil war

Daniel Racek, Paul W. Thurner, Brittany I. Davidson, Xiao Xiang Zhu, Göran Kauermann

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

1 Zitat (Scopus)

Abstract

Conflict research is increasingly influenced by modern computational and statistical techniques. Combined with recent advances in the collection and public availability of new data sources, this allows for more accurate forecasting models in ever more fine-grained spatial areas. This paper demonstrates the utilization of remote sensing data as a potential solution to the lack of official data sources for conflict forecasting in crisis-ridden countries. We evaluate and quantify remote sensing data's differentiated impact on forecasting accuracy across fine-grained spatial grid cells using the Syrian civil war as a use case. It can be shown that conflict, particularly its onset, can be forecasted more accurately by employing publicly available remote sensing datasets. These results are consistent across a range of established statistical and machine learning models, which raises the hope to get closer to reliable early-warning systems for conflict prediction.

OriginalspracheEnglisch
Seiten (von - bis)373-391
Seitenumfang19
FachzeitschriftInternational Journal of Forecasting
Jahrgang40
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - 1 Jan. 2024

Fingerprint

Untersuchen Sie die Forschungsthemen von „Conflict forecasting using remote sensing data: An application to the Syrian civil war“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren