Confidence Regions for Simulations with Learned Probabilistic Models

Armin Lederer, Qing Hao, Sandra Hirche

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

Due to the growing amount of data and processing capabilities, machine learning techniques are increasingly applied for the identification of dynamical systems. Especially probabilistic methods are promising for learning models, which in turn are frequently used for simulations. Although confidence regions around predicted trajectories are of crucial importance in many control approaches, few rigorous mathematical analysis methods are available for learned probabilistic models. Therefore, we propose a novel method to estimate confidence regions for predicted trajectories, and assign them a confidence level based on Monte Carlo random trajectory sampling. Since the confidence level has a strongly nonlinear dependence on the number of Monte Carlo samples, we derive a lower bound on the number of samples that ensures a desired minimum confidence level. The efficiency and flexibility of the proposed method is demonstrated in simulations of a Bayesian hidden Markov model and a Gaussian process state space model.

OriginalspracheEnglisch
Titel2020 American Control Conference, ACC 2020
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten3947-3952
Seitenumfang6
ISBN (elektronisch)9781538682661
DOIs
PublikationsstatusVeröffentlicht - Juli 2020
Veranstaltung2020 American Control Conference, ACC 2020 - Denver, USA/Vereinigte Staaten
Dauer: 1 Juli 20203 Juli 2020

Publikationsreihe

NameProceedings of the American Control Conference
Band2020-July
ISSN (Print)0743-1619

Konferenz

Konferenz2020 American Control Conference, ACC 2020
Land/GebietUSA/Vereinigte Staaten
OrtDenver
Zeitraum1/07/203/07/20

Fingerprint

Untersuchen Sie die Forschungsthemen von „Confidence Regions for Simulations with Learned Probabilistic Models“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren