Confidence regions for predictions of online learning-based control

Alexandre Capone, Armin Lederer, Sandra Hirche

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

1 Zitat (Scopus)

Abstract

Although machine learning techniques are increasingly employed in control tasks, few methods exist to predict the behavior of closed-loop learning-based systems. In this paper, we introduce a method for computing confidence regions of closed-loop system trajectories under an online learning-based control law. We employ a sampling-based approximation and exploit system properties to prove that the computed confidence regions are correct with high probability. In a numerical simulation, we show that the proposed approach accurately predicts correct confidence regions.

OriginalspracheEnglisch
Seiten (von - bis)1007-1012
Seitenumfang6
FachzeitschriftIFAC Proceedings Volumes (IFAC-PapersOnline)
Jahrgang53
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - 2020
Veranstaltung21st IFAC World Congress 2020 - Berlin, Deutschland
Dauer: 12 Juli 202017 Juli 2020

Fingerprint

Untersuchen Sie die Forschungsthemen von „Confidence regions for predictions of online learning-based control“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren