Computing the longest common prefix of a context-free language in polynomial time

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

5 Zitate (Scopus)

Abstract

We present two structural results concerning the longest common prefixes of non-empty languages. First, we show that the longest common prefix of the language generated by a context-free grammar of size N equals the longest common prefix of the same grammar where the heights of the derivation trees are bounded by 4N. Second, we show that each non-empty language L has a representative subset of at most three elements which behaves like L w.r.t. the longest common prefix as well as w.r.t. longest common prefixes of L after unions or concatenations with arbitrary other languages. From that, we conclude that the longest common prefix, and thus the longest common su x, of a context-free language can be computed in polynomial time.

OriginalspracheEnglisch
Titel35th Symposium on Theoretical Aspects of Computer Science, STACS 2018
Redakteure/-innenBrigitte Vallee, Rolf Niedermeier
Herausgeber (Verlag)Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (elektronisch)9783959770620
DOIs
PublikationsstatusVeröffentlicht - 2 Feb. 2018
Veranstaltung35th Symposium on Theoretical Aspects of Computer Science, STACS 2018 - Caen, Frankreich
Dauer: 28 Feb. 20183 März 2018

Publikationsreihe

NameLeibniz International Proceedings in Informatics, LIPIcs
Band96
ISSN (Print)1868-8969

Konferenz

Konferenz35th Symposium on Theoretical Aspects of Computer Science, STACS 2018
Land/GebietFrankreich
OrtCaen
Zeitraum28/02/183/03/18

Fingerprint

Untersuchen Sie die Forschungsthemen von „Computing the longest common prefix of a context-free language in polynomial time“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren